
Living on the Edge

April 25th, 2025

Shaun Thomas
Software Engineer, pgEdge

Distributed Postgres Clusters and You

2

● Distributed Postgres
● Active-Active clusters
● Cloud Services
● Platform Automation
● Ultra High Availability

www.pgedge.com

Who are pgEdge?

3

● Author
● Speaker
● Blogger
● Mentor
● Dev

shaun.thomas@
pgedge.com

Who am I?

Agenda

4

Material We’ll
Be Covering

5

1. Why Distributed Postgres?
2. Multi-Master Cluster Theory
3. Conflict Types
4. Conflict Management

Widely Distributed

6

Comparing Cluster Types

7

A Distributed Cluster

8

In Theory

9

Thinking CAP

10

CAP is not ACID

• Consistency
• Availability
• Partition Tolerance

Partitioned (distributed) clusters have
either availability or consistency, never
both.

A sturdy PACELC

11

PACELC is CAP with Latency

• Standard CAP applies
• Else even when working normally
• Choose between Latency or
• Loss of Consistency
• Most clusters choose the latter

Remember your Pack-Elk

What is
Single-Master?

12

Consider playing chess. The game state
can only have one true value, mediated
by the board itself.

That’s a standard Postgres cluster

What is
Multi-Master?

13

A swarm of starlings can operate
independently, and the group continues
to thrive despite the absence of any
single bird.

That’s a distributed Postgres cluster

Disagreeable Outcomes

14

How Conflicts Fit In

15

● Multi-Master = asynchronous operation
● Asynchronous operation = simultaneous changes
● Simultaneous changes = conflicts
● Conflicts = 😭

Four Categories of Conflict

16

1. Naturally convergent conflicts
2. Resolvable conflicts
3. Divergent conflicts
4. (Bonus) Phantom conflicts

It doesn’t matter how you got here

We’re just glad you made it

17

Convergent Conflicts

Update - Delete

18

• Update happened first? It gets deleted
• Delete happened first? Nothing to update
• End state: the row is deleted

Delete - Delete

19

• End state: the row is deleted

Update - Truncate

20

• Update happened first? The table gets truncated
• Truncate happened first? Nothing to update
• End state: the table is truncated

Delete - Truncate

21

• Delete happened first? The table gets truncated
• Truncate happened first? Nothing to delete
• End state: the table is truncated

Truncate - Truncate

22

• End state: the table is truncated

We got to the cabin,

but what happened to Jim?

23

Resolvable Conflicts

Insert - Insert

24

• Caused by this sequence:
• Node A: INSERT ... (id, col1) VALUES (2, 10)
• Node B: INSERT ... (id, col1) VALUES (2, 100)

• Last "update" wins (default resolution method)
• Result: one INSERT is discarded / overwritten

Insert - Insert (Multiple Unique Keys)

25

• Caused by this sequence:
• Node A: INSERT ... (id, email) VALUES (1, 'bob@smith.com')
• Node B: INSERT ... (id, email) VALUES (2, 'bob@smith.com')

• Last "update" wins (default resolution method)
• Results:

• One INSERT is discarded / overwritten
• Lose a primary key
• Potentially orphan foreign keys

Why Insert - Insert Conflicts Matter

26

• Losing one INSERT is technically data loss
• What did that INSERT contain?
• All nodes have the same data
• But what happened to Jim?

Update - Update - Type 1

27

• Node A: UPDATE t SET col1=100 WHERE id=4
• Node B: UPDATE t SET col1=500 WHERE id=4
• Last "update" wins (default resolution method)
• Result: contents of col1 are discarded / overwritten

Update - Update - Type 2

28

• Node A: UPDATE t SET col1=100 WHERE id=4
• Node B: UPDATE t SET col2='stuff' WHERE id=4
• Last "update" wins (default resolution method)
• Result: contents of col1 or col2 are discarded / overwritten

How Update-Update Conflicts Work

29

• Postgres logical replication copies the entire result tuple!
• Old tuple: {id: 4, col1: 50, col2: 'wow'}
• Node A: UPDATE t SET col1=100 WHERE id=4
• Logical replication sees: {id: 4, col1: 100, col2: 'wow'}
• Node B: UPDATE t SET col2='stuff' WHERE id=4
• Logical replication sees: {id: 4, col1: 50, col2: 'stuff'}
• Only one full tuple can be applied
• What happened to Jim?

Who are you

and how did you get in here?

30

Divergent Conflicts

Insert - Update

31

• Involve 3+ nodes
• Caused by this sequence:

• Node A: INSERT -> Node B
• Node B: UPDATE -> Node C
• Node C: ignores UPDATE
• Node A: Insert -> Node C

• Result: Node C has diverged

Insert - Delete

32

• Involve 3+ nodes
• Caused by this sequence:

• Node A: INSERT -> Node B
• Node B: DELETE -> Node C
• Node C: ignores DELETE
• Node A: Insert -> Node C

• Result: Node C has diverged

Insert - Truncate

33

• Involve 3+ nodes
• Caused by this sequence:

• Node A: INSERT -> Node B
• Node B: TRUNCATE -> Node C
• Node C: ignores TRUNCATE
• Node A: Insert -> Node C

• Result: Node C has diverged

What is the sound

of one hand clapping?

34

Phantom Conflicts

What is a “Phantom” Conflict?

35

● The "not a conflict" conflict
● No divergence
● No action collisions
● No latency problems
● No logs
● What is it, then?

The Conflict that Wasn’t

36

1. App: INSERT; COMMIT -> Node A
2. Node A: COMMIT -> WAL -> Node B
3. Node A: Confirm !-> App
4. Node A: Crash
5. Node B: Becomes new write target
6. App: Connection aborted? Retry insert!
7. App: INSERT -> Node B
8. Duplicate record now exists

No More Ghosts

37

● Don't auto-increment surrogate (sequence) keys
○ Use natural keys
○ Use application-generated IDs
○ Fetch sequence value before INSERT

● Confirm COMMITS actually failed
○ SELECT after re-establishing connection
○ Trust, but verify

● This is also necessary in non-distributed clusters

Preventing the Inevitable

38

The only winning move

is not to play

39

Don’t Do That

“Don’t do That” ?!

40

● “An ounce of prevention is worth a pound of cure”
● What is the primary cause of conflicts?
● Concurrent operation on the same keys
● Consider possible ways that may happen

Avoiding “Doing That”

41

● Use “sticky” sessions
● Assign app servers to specific (regional) nodes
● Interact with specific (regional) data
● Avoid unnecessary cross-node activity

Prefer Ledgers to Cumulative Totals

42

An elegant datatype

for a more civilized age

43

Rhymes with Credit

What is a CRDT?

44

Designed specifically for distribution

• Conflict-free
• Replicating
• Data
• Type

I call them Conflict Resistant Data Types

How do CRDTs Work?

45

Two basic approaches:

1. Apply a diff between the incoming and existing values
2. Use a custom data type with per-node “hidden” fields

This only works for numerical columns!

46

CRDTs in the Spock Extension

46

CREATE TABLE account (
 id BIGINT PRIMARY KEY,
 total BIGINT NOT NULL DEFAULT 0
);

ALTER TABLE account
ALTER COLUMN total
 SET (LOG_OLD_VALUE=true,
 DELTA_APPLY_FUNCTION=spock.delta_apply);

47

CRDTs in the BDR Extension

47

CREATE TABLE account (
 id BIGINT PRIMARY KEY,
 total bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

● The BDR extension uses custom data types
● Several options to choose from

How Do CRDT Deltas Work?

48

● Old tuple: {id: 5, total: 100}
● UPDATE account SET total = total + 100 WHERE id = 5
● New tuple: {id: 5, total: 200}
● Old and new values sent to remote node
● The delta function or type calculates:

○ total = local.total + remote.new.total - remote.old.total
○ total = 100 + 200 - 100 = 200

How Deltas Avoid Conflicts

49

● Old tuple: {id: 5, total: 100}
● Node A adds 100, sends: {id: 5, total: 200}
● Node B adds 400, sends: {id: 5, total: 500}
● Node A: total = 200 + (500 - 100) = 600
● Node B: total = 500 + (200 - 100) = 600

How CRDT Aggregates Work

50

1. Two node cluster
2. Initial tuple: {id: 5, total: (0, 0)}
3. Node A adds 100
4. Node A tuple: {id: 5, total: (100, 0)}
5. Node B tuple: {id: 5, total: (100, 0)}
6. Each node only interacts with its own “column”

How CRDT Aggregates Avoid Conflicts

51

1. Starting tuple: {id: 5, total: (100, 0)}
2. Total displayed as 100
3. Node A adds 100
4. Node B subtracts 50
5. New tuple: {id: 5, total: (200, -50)}
6. Total displayed as 150

Common Aggregate CRDT Caveat

52

CRDT aggregate need a “reset” function:

1. Starting tuple: {id: 5, total: (200, -50)}
2. Total displayed as 150
3. Node A sets total to 0
4. Node B does nothing
5. New tuple: {id: 5, total: (0, -50)}
6. Total displayed as -50

Like two ships

passing in the night

53

Key Management

Preventing Insert - Insert Conflicts

54

Four methods for avoiding key collisions:

1. Sequence offsets
2. Globally unique keys
3. External key generator
4. Global allocations

What are Sequence Offsets?

55

Node 1:

ALTER SEQUENCE foo_id_seq
 RESTART WITH 1001
 INCREMENT BY 10;

Node 2:

ALTER SEQUENCE foo_id_seq
 RESTART WITH 1002
 INCREMENT BY 10;

Sequence Offset Results

56

● Node 1: 1001, 1011, 1021, 1031 …
● Node 2: 1002, 1012, 1022, 1032 …
● Must be done for every sequence
● More difficult to add new nodes
● Increment size determines maximum node count
● Backward compatible with existing clusters

What are Globally Unique Keys?

57

Anything guaranteed to be unique across the cluster

● UUID: CREATE EXTENSION uuid-ossp
● Snowflake IDs

○ https://github.com/pgEdge/snowflake
○ Provide replacement for nextval(), currval()
○ Arbitrarily large 64-bit (bit-packed) values
○ May not be compatible with some front-end frameworks

https://github.com/pgEdge/snowflake

What are External Key Generators

58

● Some external service that generates keys
● May add latency to each insert
● Could be a single point of failure

What are Global Allocations?

59

● Nodes assign chunks of values by consensus
○ Node A: 1 - 2,000,000
○ Node B: 2,000,001 - 4,000,000
○ Node C: 4,000,001 - 6,000,000

● Nodes always keep a current and future chunk
● Chunk size based on column type (INT, BIGINT)
● BDR calls this sequence type galloc

Can Sequences

Ever Be Safe?

60

Sequence Safety

61

Best Practices: Don’t use SERIAL?

61

We’ve all been told not to do this:

CREATE TABLE serial_example (
 id BIGSERIAL PRIMARY KEY
);

62

This is How Postgres Does SERIAL

62

CREATE TABLE serial_example (
 id BIGINT PRIMARY KEY
);

CREATE SEQUENCE serial_example_id_seq;

ALTER SEQUENCE serial_example_id_seq
 OWNED BY serial_example.id;

ALTER TABLE ONLY public.serial_example
ALTER COLUMN id
 SET DEFAULT nextval('public.serial_example_id_seq');

Problems with Serial

63

• Lots of under-the-hood magic
• It’s just a column default
• Values can be overridden easily by users
• Not standard SQL
• May forget to transfer sequence during migrations
• What are we told to use instead?

64

Best Practices: Identities?

64

CREATE TABLE ident_example (
 id BIGINT GENERATED ALWAYS AS IDENTITY PRIMARY KEY
);

These are better, right?

Serial Killer

65

• No more magical nextval shenanigans
• The word ALWAYS means what it says
• Standard SQL
• Extra syntax to set starting point, increment size, and others
• It’s great, right?

66

Protected Identity

66

INSERT INTO ident_example (id) VALUES (2);

ERROR: cannot insert a non-DEFAULT value into column "id"
DETAIL: Column "id" is an identity column defined as GENERATED
ALWAYS.

Distributed Identities

67

• What happens in Active-Active clusters?
• We can no longer substitute our own nextval function
• Stuck with monotonically advancing sequential values
• Can’t use snowflake, timeshard, or other numerical replacements
• Ironically too inflexible

Unexpected Sequence Conclusion

68

• Keep using SERIAL and BIGSERIAL
• Or just use DEFAULT directly
• May need to reverse-migrate tables using IDENTITY

You don’t need him,

I’m the upgraded model

69

Shameless Self Promotion

Handling Phantom Updates

70

UPDATEs can lead to divergent conflicts

1. UPDATE arrives after initial INSERT
2. UPDATE ignored

How to fix?

1. Convert UPDATE to INSERT
2. Ignore “old” INSERT when it arrives

UPDATE Conversion Safety

71

This is safe, provided:

1. Timestamps are tightly synchronized
2. Retain transaction IDs in converted statement

What do you want

on your tombstone?

72

Historical Relevance

Handling Data Deletion

73

DELETEs or can lead to divergent conflicts

1. Data gets deleted
2. Old INSERT statements may then succeed

How to fix?

1. Retain the old row as a “tombstone” (Soft delete)
2. Don’t allow inserts on tombstone keys

Tombstone Persistence

74

How long should tombstones last?

● At least as long as potential node latency
● Could work similarly to hot_standby_feedback
● Manage cleanup through node consensus

Questions?

75

